Problem Set: Linear Discriminant Analysis

1. Suppose we have a set of data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{6}, y_{6}\right)$ as follows:
$x_{1}=(1,2), x_{2}=(2,1), x_{3}=(2,2), x_{4}=(3,3), x_{5}=(3,4), x_{6}=(4,3)$ with $y_{1}=y_{2}=y_{3}=k_{1}=1$ and $y_{4}=y_{5}=y_{6}=k_{2}=2$.

Apply linear discriminant analysis by doing the following:
a) Find estimates for the linear discriminant functions $\delta_{1}(x)$ and $\delta_{2}(x)$.
b) Find the line that decides between the two classes.
c) Classify the new point $x=(4,5)$.
2. Suppose we have a set of data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{6}, y_{6}\right)$ as follows:
$x_{1}=(0,0), x_{2}=(1,1), x_{3}=(2,3), x_{4}=(2,4), x_{5}=(3,2), x_{6}=(4,2)$ with $y_{1}=y_{2}=k_{1}=1, y_{3}=y_{4}=k_{2}=2$ and $y_{5}=y_{6}=k_{3}=3$.

Apply linear discriminant analysis by doing the following:
d) Find estimates for the linear discriminant functions $\delta_{1}(x), \delta_{2}(x)$ and $\delta_{3}(x)$.
e) Find the lines that decide between each pair of classes.
f) Classify the new point $x=(3,0)$.

