Problem Set: Logistic Regression

1. Suppose we have a set of data $\left(z_{1}, y_{1}\right), \ldots,\left(z_{5}, y_{5}\right)$ as follows:
$z_{1}=(1,2), z_{2}=(2,1), z_{3}=(2,3), z_{4}=(3,2), z_{5}=(1,1)$ with $y_{1}=y_{2}=k_{0}=0$ and $y_{3}=y_{4}=y_{5}=k_{1}=1$.

Apply logistic regression by doing the following:
a) Find the log-likelihood function $L(\beta)$.
b) Apply iterative reweighted least squares to find estimates for $\beta_{0}, \beta_{1}, \beta_{2}$.
c) Find the estimated probability function $\hat{p}(x)$, where $p(x)=\operatorname{Pr}(Y=1 \mid X=x)$.
d) Classify the new point $x=(1.5,1)$ using $\hat{p}(x)$.

