Solution Set: Linear Discriminant Analysis

1. Here is a graph of the data points:

The number of features p is 2 , the number of classes K is 2 , the total number of data points N is 6 , the number N_{1} of data points in class k_{1} is 3 , and the number N_{2} of data points in class k_{2} is 3.

First, we will find estimates for π_{1} and π_{2}, the prior probabilities that $Y=k_{1}$ and $Y=k_{2}$, respectively.
Then, we will find estimates for μ_{1} and μ_{2}, the class-specific mean vectors.
We can then calculate the estimate for the covariance matrix Σ.
Finally, using the estimates $\widehat{\pi_{1}}, \widehat{\pi_{2}}, \widehat{\mu_{1}}, \widehat{\mu_{2}}, \widehat{\Sigma}$, we can find the estimates for the linear discriminant functions $\delta_{1}(x)$ and $\delta_{2}(x)$.
$\widehat{\pi_{1}}=\frac{N_{1}}{N}=\frac{3}{6}=\frac{1}{2}$
$\widehat{\pi_{2}}=\frac{N_{2}}{N}=\frac{3}{6}=\frac{1}{2}$
$\widehat{\mu_{1}}=\frac{1}{N_{1}} \sum_{i: y_{i}=1} x_{i}=\frac{1}{3}\left[x_{1}+x_{2}+x_{3}\right]=\left[\begin{array}{l}\frac{5}{3} \\ \frac{5}{3}\end{array}\right]$

$$
\begin{aligned}
& \widehat{\mu_{2}}=\frac{1}{N_{2}} \sum_{i: y_{i}=2} x_{i}=\frac{1}{3}\left[x_{4}+x_{5}+x_{6}\right]=\left[\begin{array}{c}
\frac{10}{3} \\
\frac{10}{3}
\end{array}\right] \\
& \widehat{\Sigma}=\frac{1}{N-K} \sum_{k=1}^{K} \sum_{i: y_{i}=k}\left(x_{i}-\widehat{\mu_{k}}\right)\left(x_{i}-\widehat{\mu_{k}}\right)^{T} \\
& =\frac{1}{6-2}\left[\begin{array}{cc}
12 / 9 & -6 / 9 \\
-6 / 9 & 12 / 9
\end{array}\right]=\left[\begin{array}{cc}
1 / 3 & -1 / 6 \\
-1 / 6 & 1 / 3
\end{array}\right] \\
& \Rightarrow \quad \hat{\Sigma}^{-1}=\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right] \\
& \widehat{\delta_{1}}(x)=x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{1}}-\frac{1}{2}{\widehat{\mu_{1}}}^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{1}}+\log \widehat{\pi_{1}} \\
& =x^{T}\left[\begin{array}{l}
10 \\
10
\end{array}\right]-\frac{1}{2}\left(\frac{100}{3}\right)+\log \frac{1}{2} \\
& =10 X_{1}+10 X_{2}-\frac{50}{3}+\log \frac{1}{2} \\
& \widehat{\delta_{2}}(x)=x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{2}}-\frac{1}{2}{\widehat{\mu_{2}}}^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{2}}+\log \widehat{\pi_{2}} \\
& =x^{T}\left[\begin{array}{l}
20 \\
20
\end{array}\right]-\frac{1}{2}\left(\frac{400}{3}\right)+\log \frac{1}{2} \\
& =20 X_{1}+20 X_{2}-\frac{200}{3}+\log \frac{1}{2}
\end{aligned}
$$

Setting $\widehat{\delta_{1}}(x)=\widehat{\delta_{2}}(x)$
$\Rightarrow \quad 10 X_{1}+10 X_{2}-\frac{50}{3}+\log \frac{1}{2}=20 X_{1}+20 X_{2}-\frac{200}{3}+\log \frac{1}{2}$
$\Rightarrow \quad \frac{150}{3}=10 X_{1}+10 X_{2}$
$\Rightarrow \quad 50=10 X_{1}+10 X_{2}$
$\Rightarrow \quad 5=X_{1}+X_{2}$
$\Rightarrow \quad-X_{1}+5=X_{2}$
So, the line that decides between the two classes is given by $X_{2}=-X_{1}+5$.
Here is a graph of the decision line:

If $\widehat{\delta_{1}}(x)>\widehat{\delta_{2}}(x)$, then we classify x as of class k_{1}.
So if x is below the line $X_{2}=-X_{1}+5$, then we classify x as of class k_{1}.
Conversely, if $\widehat{\delta_{1}}(x)<\widehat{\delta_{2}}(x)$, then we classify x as of class k_{2}. This corresponds to x being above the line $X_{2}=-X_{1}+5$.
The point $(4,5)$ is above the line; so we classify it as of class k_{2}.
2. Here is a graph of the data points:

The number of features p is 2 , the number of classes K is 3 , the total number of data points N is 6 , the number N_{1} of data points in class k_{1} is 2 , the number N_{2} of data points in class k_{2} is 2 , and the number N_{3} of data points in class k_{3} is 2 .
First, we will find estimates for $\pi_{1}, \pi_{2}, \pi_{3}$, the prior probabilities that $Y=k_{1}, Y=k_{2}, Y=k_{3}$, respectively.
Then, we will find estimates for $\mu_{1}, \mu_{2}, \mu_{3}$, the class-specific mean vectors.
We can then calculate the estimate for the covariance matrix Σ.
Finally, using the estimates $\widehat{\pi_{1}}, \widehat{\pi_{2}}, \widehat{\pi_{3}}, \widehat{\mu_{1}}, \widehat{\mu_{2}}, \widehat{\mu_{3}}, \widehat{\Sigma}$, we can find the estimates for the linear discriminant functions $\delta_{1}(x), \delta_{2}(x)$, and $\delta_{3}(x)$.

$$
\begin{aligned}
& \widehat{\pi_{1}}=\frac{N_{1}}{N}=\frac{2}{6}=\frac{1}{3} \\
& \widehat{\pi_{2}}=\frac{N_{2}}{N}=\frac{2}{6}=\frac{1}{3} \\
& \widehat{\pi_{3}}=\frac{N_{3}}{N}=\frac{2}{6}=\frac{1}{3} \\
& \widehat{\mu_{1}}=\frac{1}{N_{1}} \sum_{i: y_{i}=1} x_{i}=\frac{1}{2}\left[x_{1}+x_{2}\right]=\left[\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right] \\
& \widehat{\mu_{2}}=\frac{1}{N_{2}} \sum_{i: y_{i}=2} x_{i}=\frac{1}{2}\left[x_{3}+x_{4}\right]=\left[\begin{array}{c}
2 \\
7 / 2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{\mu_{3}}=\frac{1}{N_{3}} \sum_{i: y_{i}=3} x_{i}=\frac{1}{2}\left[x_{5}+x_{6}\right]=\left[\begin{array}{c}
7 / 2 \\
2
\end{array}\right] \\
& \widehat{\Sigma}=\frac{1}{N-K} \sum_{k=1}^{K} \sum_{i: y_{i}=k}\left(x_{i}-\widehat{\mu_{k}}\right)\left(x_{i}-\widehat{\mu_{k}}\right)^{T} \\
& =\frac{1}{6-3}\left[\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 / 3 & 1 / 6 \\
1 / 6 & 1 / 3
\end{array}\right] \\
& \Rightarrow \quad \hat{\Sigma}^{-1}=\left[\begin{array}{cc}
4 & -2 \\
-2 & 4
\end{array}\right] \\
& \widehat{\delta_{1}}(x)=x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{1}}-\frac{1}{2}{\widehat{\mu_{1}}}^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{1}}+\log \widehat{\pi_{1}} \\
& =x^{T}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\frac{1}{2}(1)+\log \frac{1}{3} \\
& =X_{1}+X_{2}-\frac{1}{2}+\log \frac{1}{3} \\
& \widehat{\delta_{2}}(x)=x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{2}}-\frac{1}{2}{\widehat{\mu_{2}}}^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{2}}+\log \widehat{\pi_{2}} \\
& =x^{T}\left[\begin{array}{c}
1 \\
10
\end{array}\right]-\frac{1}{2}(37)+\log \frac{1}{3} \\
& =X_{1}+10 X_{2}-\frac{37}{2}+\log \frac{1}{3} \\
& \widehat{\delta_{3}}(x)=x^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{3}}-\frac{1}{2}{\widehat{\mu_{3}}}^{T} \widehat{\Sigma}^{-1} \widehat{\mu_{3}}+\log \widehat{\pi_{3}} \\
& =x^{T}\left[\begin{array}{c}
10 \\
1
\end{array}\right]-\frac{1}{2}(37)+\log \frac{1}{3} \\
& =10 X_{1}+X_{2}-\frac{37}{2}+\log \frac{1}{3}
\end{aligned}
$$

Setting $\widehat{\delta_{1}}(x)=\widehat{\delta_{2}}(x)$

$$
\begin{array}{ll}
\Rightarrow & X_{1}+X_{2}-\frac{1}{2}+\log \frac{1}{3}=X_{1}+10 X_{2}-\frac{37}{2}+\log \frac{1}{3} \\
\Rightarrow & 18=9 X_{2} \\
\Rightarrow & 2=X_{2}
\end{array}
$$

So, the line that decides between classes k_{1} and k_{2} is given by $X_{2}=2$.

$$
\begin{aligned}
& \text { Setting } \widehat{\delta_{1}}(x)=\widehat{\delta_{3}}(x) \\
& \Rightarrow \quad X_{1}+X_{2}-\frac{1}{2}+\log \frac{1}{3}=10 X_{1}+X_{2}-\frac{37}{2}+\log \frac{1}{3} \\
& \Rightarrow \quad 18=9 X_{1} \\
& \Rightarrow \quad 2=X_{1}
\end{aligned}
$$

So, the line that decides between classes k_{1} and k_{3} is given by $X_{1}=2$.
Setting $\widehat{\delta_{2}}(x)=\widehat{\delta_{3}}(x)$
$\Rightarrow \quad X_{1}+10 X_{2}-\frac{37}{2}+\log \frac{1}{3}=10 X_{1}+X_{2}-\frac{37}{2}+\log \frac{1}{3}$
$\Rightarrow \quad 9 X_{2}=9 X_{1}$
$\Rightarrow \quad X_{2}=X_{1}$

So, the line that decides between classes k_{2} and k_{3} is given by $X_{2}=X_{1}$.

Here is a graph of the decision lines:

The lines divide the plane into 3 regions.
If x is in region I , then we classify x as of class k_{1}. Similarly, points in region II get classified as of k_{2}, and points in region III get classified as of k_{3}.
The point $(3,0)$ is in region III; so we classify it as of class k_{3}.

