Solution Set: Logistic Regression

1. a) The log-likelihood function L(f) is given by
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b) In iterative reweighted least squares, we pick an initial value ,8(0) and update ﬁ(t) by
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andv = ZB® + w-1(y — p).
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we'll pick 0 as the initial value 8.
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We update p, W, v and calculate B(Z).
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If we keep iterating,we get
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B and B® are nearly the same as S So, B converges to [0.778
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The estimates for Sy, By, B, are By = —2.3, B, = 0.778,B, = 0.778.
The estimated probability function (x)is given by (x) = —oor it
c) The estimated probability function p(x)is given by p(x) = IR Py

e—2:3+0.778x1+0.778x2

SO p(x) = 1+e—2.3+0.778x1+0.778x2'

d) p(1.5,1) = 0.412. We classify x as of class 1 if p(x) > 1/2 and as of class 0 if p(x) < 1/2.
Therefore, we classify (1.5, 1) as of class 0. The decision boundary is given by
—2.3+0.778x; + 0.778x, = 0.

This is the line x, = —x{ + 2.956.

Here is what it looks like with the data points:
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Xy > —x1 + 2.956 corresponds to p(x) > 1/2, and

Xy < —x1 + 2.956 corresponds to p(x) < 1/2.



