Solution Set: Logistic Regression

1. a) The log-likelihood function $L(\beta)$ is given by

$$\begin{split} L(\beta) &= \sum_{i=1}^{N} [y_i \beta^T z_i' - \log(1 + e^{\beta^T z_i'})] \\ &= -\log \left(1 + e^{\beta_0 + \beta_1 + 2\beta_2}\right) - \log \left(1 + e^{\beta_0 + 2\beta_1 + \beta_2}\right) \\ &+ \beta_0 + 2\beta_1 + 3\beta_2 - \log \left(1 + e^{\beta_0 + 2\beta_1 + 3\beta_2}\right) \\ &+ \beta_0 + 3\beta_1 + 2\beta_2 - \log \left(1 + e^{\beta_0 + \beta_1 + 2\beta_2}\right) \\ &+ \beta_0 + \beta_1 + \beta_2 - \log \left(1 + e^{\beta_0 + \beta_1 + \beta_2}\right) \end{split}$$

b) In iterative reweighted least squares, we pick an initial value $eta^{(0)}$ and update $eta^{(t)}$ by

$$\beta^{(t+1)} = (Z^T W Z)^{-1} Z^T W \boldsymbol{v}$$
 where

$$Z = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 2 \\ 1 & 1 & 1 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{p} = \begin{bmatrix} p(z_1; \boldsymbol{\beta}^{(t)}) \\ \vdots \\ p(z_5; \boldsymbol{\beta}^{(t)}) \end{bmatrix},$$

$$W = \begin{bmatrix} p(z_1; \beta^{(t)})(1 - p(z_1; \beta^{(t)})) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & p(z_5; \beta^{(t)})(1 - p(z_5; \beta^{(t)})) \end{bmatrix},$$

and
$$v = Z\beta^{(t)} + W^{-1}(y - p)$$
.

Recall that
$$p(z_i; \beta^{(t)}) = \frac{e^{\left(\beta^{(t)}\right)^T z_i'}}{1 + e^{\left(\beta^{(t)}\right)^T z_i'}}$$
.

We'll pick $\mathbf{0}$ as the initial value $\beta^{(0)}$.

Then,
$$\mathbf{p} = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$
, $W = \begin{bmatrix} 1/4 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1/4 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -2 \\ -2 \\ 2 \\ 2 \end{bmatrix}$

$$\Rightarrow \qquad \beta^{(1)} = \begin{bmatrix} -2\\2/3\\2/3 \end{bmatrix} \approx \begin{bmatrix} -2\\0.667\\0.667 \end{bmatrix}$$

We update p, W, v and calculate $\beta^{(2)}$.

$$\beta^{(2)} \approx \begin{bmatrix} -2.28\\ 0.77\\ 0.77 \end{bmatrix}.$$

If we keep iterating, we get

$$\beta^{(3)} \approx \begin{bmatrix} -2.3\\ 0.778\\ 0.778 \end{bmatrix}$$

$$\beta^{(4)} \approx \begin{bmatrix} -2.3\\ 0.778\\ 0.778 \end{bmatrix}$$

 $\beta^{(5)}$ and $\beta^{(6)}$ are nearly the same as $\beta^{(4)}$. So, $\beta^{(t)}$ converges to $\begin{bmatrix} -2.3\\0.778\\0.778 \end{bmatrix}$.

The estimates for β_0 , β_1 , β_2 are $\widehat{\beta_0}=-2.3$, $\widehat{\beta_1}=0.778$, $\widehat{\beta_2}=0.778$.

c) The estimated probability function $\hat{p}(x)$ is given by $\hat{p}(x) = \frac{e^{\widehat{\beta_0} + \widehat{\beta_1} x_1 + \widehat{\beta_2} x_2}}{1 + e^{\widehat{\beta_0} + \widehat{\beta_1} x_1 + \widehat{\beta_2} x_2}}$.

So
$$\hat{p}(x) = \frac{e^{-2.3+0.778x_1+0.778x_2}}{1+e^{-2.3+0.778x_1+0.778x_2}}$$

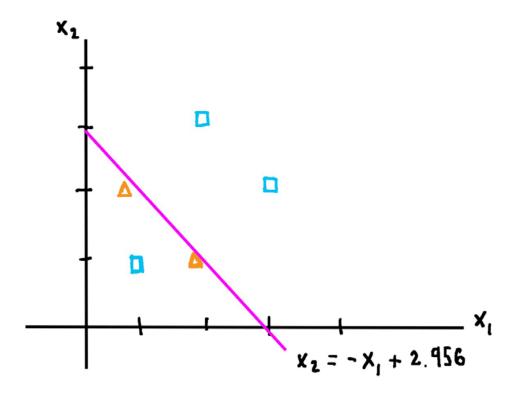
d) $\hat{p}(1.5, 1) = 0.412$. We classify x as of class 1 if $\hat{p}(x) > 1/2$ and as of class 0 if $\hat{p}(x) < 1/2$.

Therefore, we classify (1.5, 1) as of class 0. The decision boundary is given by

$$-2.3 + 0.778x_1 + 0.778x_2 = 0.$$

This is the line $x_2 = -x_1 + 2.956$.

Here is what it looks like with the data points:



$$x_2>-x_1+2.956$$
 corresponds to $\hat{p}(x)>1/2,$ and

$$x_2 < -x_1 + 2.956$$
 corresponds to $\hat{p}(x) < 1/2$.