Solution Set: Support Vector Classifier

1. Our convex optimization problem takes the form:

$$
\begin{aligned}
& \underset{\left(\beta_{0}, \beta, \varepsilon\right) \in \mathbb{R}^{7}}{\operatorname{minimize}} f\left(\beta_{0}, \beta_{1}, \beta_{2}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right) \quad \text { given the constraint } \\
& g_{i}\left(\beta_{0}, \beta, \varepsilon\right) \leq 0 \text { for } i=1,2,3,4 \\
& \text { and } h_{i}\left(\beta_{0}, \beta, \varepsilon\right) \leq 0 \text { for } i=1,2,3,4 \\
& \text { where }\left(\beta_{0}, \beta, \varepsilon\right)=\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{4} \varepsilon_{i}, \\
& g_{i}\left(\beta_{0}, \beta, \varepsilon\right)=1-\varepsilon_{i}-y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}\right) \text { for }=1,2,3,4 \text {, } \\
& \text { and } h_{i}\left(\beta_{0}, \beta, \varepsilon\right)=-\varepsilon_{i} \text { for } i=1,2,3,4 \\
& \text { So } \quad g_{1}=1-\varepsilon_{1}+\left(\beta_{0}\right) \\
& g_{2}=1-\varepsilon_{2}+\left(\beta_{0}+\beta_{2}\right) \\
& g_{3}=1-\varepsilon_{3}-\left(\beta_{0}-\beta_{1}\right) \\
& g_{4}=1-\varepsilon_{4}-\left(\beta_{0}+\beta_{1}\right) \\
& h_{1}=-\varepsilon_{1} \\
& h_{2}=-\varepsilon_{2} \\
& h_{3}=-\varepsilon_{3} \\
& h_{4}=-\varepsilon_{4} \text {. }
\end{aligned}
$$

The dual Lagrangian is given by $L_{D}(\alpha)=\sum_{i=1}^{4} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$.
So $L_{D}(x, \alpha)=\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)-\frac{1}{2}\left[\alpha_{2}^{2}+\alpha_{3}^{2}+\alpha_{4}^{2}-2 \alpha_{3} \alpha_{4}\right]$

We want to maximize $L_{D}(\alpha)$ subject to the constraints $0 \leq \alpha_{i} \leq C \forall i$ and $\alpha_{1} y_{1}+\alpha_{2} y_{2}+\alpha_{3} y_{3}+$ $\alpha_{4} y_{4}=0$. That is, we need $0 \leq \alpha_{i} \leq C \forall i$ and $-\alpha_{1}-\alpha_{2}+\alpha_{3}+\alpha_{4}=0$. These constraints give us a four-dimensional plane in the positive box $0 \leq \alpha_{i} \leq C \forall i$.

Let $H=\left\{\left(\alpha_{1}, \ldots, \alpha_{4}\right) \in \mathbb{R}^{4} \mid 0 \leq \alpha_{i} \leq C \forall i\right.$ and $\left.-\alpha_{1}-\alpha_{2}+\alpha_{3}+\alpha_{4}=0\right\}$. We want to maximize $L_{D}\left(\alpha_{1}, \ldots, \alpha_{4}\right)$ on H.

To find the maximum of $L_{D}\left(\alpha_{1}, \ldots, \alpha_{4}\right)$ on H, we can use any computational software.
It turns out that, for $C=2$, the maximum value of L_{D} on H is 6 and it occurs at $\left(\alpha_{1}, \ldots, \alpha_{4}\right)=(2,2,2,2)$.
$\beta=\sum_{i=1}^{4} \alpha_{i} y_{i} x_{i}$
$\Rightarrow \quad \beta=\left[\begin{array}{c}0 \\ -2\end{array}\right]$.
By complementary slackness, we have $\alpha_{i}\left(1-\varepsilon_{i}-y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}\right)\right)=0 \forall i=1, \ldots, 4$

This gives us a system of 4 equations and 5 unknowns $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \beta_{0}$. Solving this system gives $\varepsilon_{1}=2, \varepsilon_{2}=\varepsilon_{3}=\varepsilon_{4}=0$, and $\beta_{0}=1$.

The equation of our hyperplane is given by $\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}=0$.
So we get $1-2 X_{2}=0$

$$
\Rightarrow \quad X_{2}=\frac{1}{2}
$$

Since $\alpha_{i}>0$ for $i=1, \ldots, 4$, we have that each x_{i} satisfies $y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}\right)=1-\varepsilon_{i}$. Hence, $x_{1}, x_{2}, x_{3}, x_{4}$ are all support vectors.
b) For $C=4, L_{D}$ has an absolute max value of 10 and it occurs at $\left(\alpha_{1}, \ldots, \alpha_{4}\right)=(4,2,3,3)$.
$\beta=\left[\begin{array}{c}0 \\ -2\end{array}\right], \beta_{0}=1, \varepsilon_{1}=2, \varepsilon_{2}=\varepsilon_{3}=\varepsilon_{4}=0$, and the hyperplane is $X_{2}=\frac{1}{2}$, the same result we got for $C=2$.
c) For $C=1, L_{D}$ has an absolute max value of $\frac{7}{2}$ and it occurs at $\left(\alpha_{1}, \ldots, \alpha_{4}\right)=(1,1,1,1)$.
$\beta=\left[\begin{array}{c}0 \\ -1\end{array}\right]$. The complementary slackness equations
$\alpha_{i}\left(1-\varepsilon_{i}-y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}\right)\right)=0 \forall i=1, \ldots, 4$
give us a system of 4 equations and 5 unknowns $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \beta_{0}$. This system has more than one solution. One solution is $\beta_{0}=0, \varepsilon_{1}=1, \varepsilon_{2}=0, \varepsilon_{3}=1, \varepsilon_{4}=1$. The hyperplane is $X_{2}=0$. Another solution is $\beta_{0}=1, \varepsilon_{1}=2, \varepsilon_{2}=1, \varepsilon_{3}=0, \varepsilon_{4}=0$. The hyperplane is $X_{2}=1$.
2. Our convex optimization problem takes the form:

$$
\begin{aligned}
& \underset{\left(\beta_{0}, \beta, \varepsilon\right) \in \mathbb{R}^{8}}{\operatorname{minimize}} \quad f\left(\beta_{0}, \beta_{1}, \beta_{2}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}\right) \\
& \qquad \begin{array}{l}
g_{i}\left(\beta_{0}, \beta, \varepsilon\right) \leq 0 \text { for } i=1,2,3,4,5 \\
\\
\text { and } h_{i}\left(\beta_{0}, \beta, \varepsilon\right) \leq 0 \text { for } i=1,2,3,4,5 \\
\\
\text { where }\left(\beta_{0}, \beta, \varepsilon\right)=\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{5} \varepsilon_{i}, \\
\\
g_{i}\left(\beta_{0}, \beta, \varepsilon\right)=1-\varepsilon_{i}-y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\right. \\
\text { and } h_{i}\left(\beta_{0}, \beta, \varepsilon\right)=-\varepsilon_{i} \text { for } i=1,2,3,4,5 \\
\text { So } \quad g_{1}=1-\varepsilon_{1}-\left(\beta_{0}+\beta_{2}\right) \\
g_{2}=1-\varepsilon_{2}-\left(\beta_{0}-\beta_{2}\right) \\
g_{3}=1-\varepsilon_{3}+\left(\beta_{0}\right) \\
g_{4}=1-\varepsilon_{4}+\left(\beta_{0}+\beta_{1}+\beta_{2}\right) \\
g_{5}=1-\varepsilon_{5}+\left(\beta_{0}+\beta_{1}-\beta_{2}\right) \\
h_{1}=-\varepsilon_{1} \\
h_{2}=-\varepsilon_{2} \\
h_{3}=-\varepsilon_{3} \\
h_{4}=-\varepsilon_{4} \\
h_{5}=-\varepsilon_{5}
\end{array}
\end{aligned}
$$

given the constraint

$$
g_{i}\left(\beta_{0}, \beta, \varepsilon\right)=1-\varepsilon_{i}-y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}\right) \text { for }=1,2,3,4,5,
$$

The dual Lagrangian is given by $L_{D}(\alpha)=\sum_{i=1}^{5} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$.
So $L_{D}(x, \alpha)=\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right)-\frac{1}{2}\left[\alpha_{1}^{2}+\alpha_{2}^{2}+2 \alpha_{4}^{2}+2 \alpha_{5}^{2}-2 \alpha_{1} \alpha_{2}-2 \alpha_{1} \alpha_{4}+2 \alpha_{1} \alpha_{5}+\right.$ $2 \alpha_{2} \alpha_{4}-2 \alpha_{2} \alpha_{5}$]

We want to maximize $L_{D}(\alpha)$ subject to the constraints $0 \leq \alpha_{i} \leq C \forall i$ and $\alpha_{1} y_{1}+\alpha_{2} y_{2}+\alpha_{3} y_{3}+$ $\alpha_{4} y_{4}+\alpha_{5} y_{5}=0$. That is, we need $0 \leq \alpha_{i} \leq C \forall i$ and $\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}=0$. These constraints give us a five-dimensional plane in the positive box $0 \leq \alpha_{i} \leq C \forall i$.

Let $H=\left\{\left(\alpha_{1}, \ldots, \alpha_{4}, \alpha_{5}\right) \in \mathbb{R}^{5} \mid 0 \leq \alpha_{i} \leq C \forall i\right.$ and $\left.\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}=0\right\}$. We want to maximize $L_{D}\left(\alpha_{1}, \ldots, \alpha_{4}, \alpha_{5}\right)$ on H.

To find the maximum of $L_{D}\left(\alpha_{1}, \ldots, \alpha_{4}, \alpha_{5}\right)$ on H, we can use any computational software.
It turns out that, for $C=2$, the maximum value of L_{D} on H is 6 and it occurs at $\left(\alpha_{1}, \ldots, \alpha_{4}, \alpha_{5}\right)=$ (2, 2, 2, 1, 1).

$$
\begin{aligned}
& \beta=\sum_{i=1}^{5} \alpha_{i} y_{i} x_{i} \\
& \Rightarrow \quad \beta=\left[\begin{array}{c}
-2 \\
0
\end{array}\right] .
\end{aligned}
$$

By complementary slackness, we have $\alpha_{i}\left(1-\varepsilon_{i}-y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}\right)\right)=0 \forall i=1, \ldots, 5$ and $\mu_{i} \varepsilon_{i}=0 \forall i$.

Since $\alpha_{4}, \alpha_{5} \neq C$ and $\alpha_{i}=C-\mu_{i} \forall i, \mu_{4}, \mu_{5} \neq 0$. Thus, $\varepsilon_{4}=\varepsilon_{5}=0$ since $\mu_{i} \varepsilon_{i}=0 \forall i$.
Using $\alpha_{i}\left(1-\varepsilon_{i}-y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}\right)\right)=0 \forall i$, we can solve for β_{0} and the remaining ε^{\prime} s. We get $\beta_{0}=1, \varepsilon_{1}=0, \varepsilon_{2}=0, \varepsilon_{3}=2, \varepsilon_{4}=0, \varepsilon_{5}=0$.

The equation of our hyperplane is given by $\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}=0$.
So we get $1-2 X_{1}=0$

$$
\Rightarrow \quad X_{1}=\frac{1}{2}
$$

Since $\alpha_{i}>0$ for $i=1, \ldots, 5$, we have that each x_{i} satisfies $y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}\right)=1-\varepsilon_{i}$. Hence, $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are all support vectors.
b) For $C=4, L_{D}$ has an absolute max value of 10 and it occurs at $\left(\alpha_{1}, \ldots, \alpha_{5}\right)=(4,2,4,2,0)$.
$\beta=\left[\begin{array}{c}-2 \\ 0\end{array}\right], \beta_{0}=1, \varepsilon_{1}=0, \varepsilon_{2}=0, \varepsilon_{3}=2, \varepsilon_{4}=0, \varepsilon_{5}=0$, and the hyperplane is $X_{1}=\frac{1}{2}$, the same result we got for $C=2$.
c) For $C=1, L_{D}$ has an absolute max value of $\frac{7}{2}$ and it occurs at $\left(\alpha_{1}, \ldots, \alpha_{5}\right)=\left(1,1,1, \frac{1}{2}, \frac{1}{2}\right)$.
$\beta=\left[\begin{array}{c}-1 \\ 0\end{array}\right], \beta_{0}=0, \varepsilon_{1}=1, \varepsilon_{2}=1, \varepsilon_{3}=1, \varepsilon_{4}=0, \varepsilon_{5}=0$, and the hyperplane is $X_{1}=0$.

